skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Malik, Abid M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The HPC industry is inexorably moving towards an era of extremely heterogeneous architectures, with more devices configured on any given HPC platform and potentially more kinds of devices, some of them highly specialized. Writing a separate code suitable for each target system for a given HPC application is not practical. The better solution is to use directive-based parallel programming models such as OpenMP. OpenMP provides a number of options for offloading a piece of code to devices like GPUs. To select the best option from such options during compilation, most modern compilers use analytical models to estimate the cost of executing the original code and the different offloading code variants. Building such an analytical model for compilers is a difficult task that necessitates a lot of effort on the part of a compiler engineer. Recently, machine learning techniques have been successfully applied to build cost models for a variety of compiler optimization problems. In this paper, we present COMPOFF, a cost model which uses the multi-layer perceptrons to statically estimates the Cost of OpenMP OFFloading. We used six different transformations on a parallel code of Wilson Dslash Operator to support GPU offloading, and we predicted their cost of execution on different GPUs using COMPOFF during compile time. Our results show that this model can predict offloading costs with a root mean squared error in prediction of less than 0.5 seconds. Our preliminary findings indicate that this work will make it much easier and faster for scientists and compiler developers to port legacy HPC applications that use OpenMP to new heterogeneous computing environments. 
    more » « less